Cross Site Request Forgery

Konstantin Kafer

Hasso-Plattner-Institut, Potsdam

Abstract. Cross Site Request Forgery is a technique that allows the at-
tacker to trick a user into performing an action, using her authority and
credentials. Another commonly used name is “Session Riding”. It works by
submitting HTTP requests from the user’s web browser to a vulnerable web
application. The victim’s browser automatically sends the authorization in-
formation stored in the cookie with the request; if the victim is logged into
a web application, the requested action is performed because the web appli-
cation does not know that this was a forged request.

1 The Confused Deputy attack

Cross Site Request Forgery is commonly referred to as a “Confused Deputy” attack.
In this type of attack, a system is exploited by tricking it into using its authority
to do something on the behalf of the attacker. The targeted system (the “confused
deputy”) is allowed to perform the action the client requests, but the way the system
is used was not intended.

The Confused Deputy problem was first described by Norm Hardy ([1]). The
original example explained a compilation service that maintained a billing file where
it stored billing information for the clients. Regular users don’t have (write) access
to that billing file so that they can’t manipulate the billings file. However, it turned
out that users could supply arbitrary output paths for the compilation results. Since
the compilation system itself could edit the billings file (since it had to record who
compiled how many files to be able to bill the clients later) it could also overwrite the
billings file with the compilation results, thus destroying the billings file effectively.

This is a good description of a Confused Deputy attack in which the attacker (the
clients who want to compile files) can trick the compilation system into destroying
its billings file. This is not necessarily a security hole; the compilation system was
supposed to be able to write to the billings file, but not in the way the client
requested it.

Cross Site Request Forgeries are similar: The user does in fact have the permis-
sion to do a certain thing on a web page, like buying a book, changing her password
or transferring funds since she is logged into the web application that allows her to
perform this task. The only difference is that the request does not originate from
a web page generated by that system but from a third party web page, hosted on
another computer.

2 The Browser Security Model

To understand why a Cross Site Request Forgery works, we are going to have a
look at the browser security model. Browser Security is based on the “Same Origin”
principle ([2]); it’s only possible to programmatically access data in a document if
it origins from the same host name as the accessing document is from. If a web page
is loaded from “example.com”, it cannot access the contents of a web page loaded
from “example.net”. It is however possible to load a URL from another host, for
example by including it as image or as IFrame.

The Same Domain Origin model also applies to cookies. A script in a web page
can only access cookies set for the domain the web page (not the script!) was
loaded from. This means that you can’t steal Session IDs or other values stored
in cookies. Throughout the history of browsers, some security holes existed which
allowed malicious scripts to access content from other hosts or read out arbitrary
cookies, but they are largely gone.

The XMLHttpRequest object introduced by Internet Explorer and adopted by
all major browser vendors has the same restrictions: It is only possible to send
requests to the same host name as the page was loaded from ([3]).

3 HTTP and Cookies

The Hypertext Transfer Protocol (HTTP 1.1 defined in RFC 2616 ([4]) is the most
current version) is the predominant protocol used for retrieving web pages. It sup-
ports different request modes; GET and POST are the ones most commonly used
on the web. The RFC describes it as follows: “The GET method means retrieve
whatever information (in the form of an entity) is identified by the Request-URIL.”
[4, Section 9.3]. GET methods are not supposed to have any side effects on the
server:

In particular, the convention has been established that the GET and HEAD
methods SHOULD NOT have the significance of taking an action other than

retrieval. These methods ought to be considered ‘safe’.
(RFC 2616 [4], Section 9.1.1)

POST on the other hand is a request scheme that allows submission of data to
the server in a dedicated Request Body. Both GET and POST allow the inclusion
of parameters in the Request URI, but only POST requests may have side effects,
such as data creation, manipulation or deletion on the server. Since a Cross Site
Request Forgery usually involves manipulation of data on the server, most of forged
requests are POST requests. The next section describes attack vectors and explains
how POST requests can be automatically sent without user interaction from within
the victim’s browser.

An extension to HTTP are cookies, originally defined in RFC 2109 ([5]) and de-
veloped by Netscape. Cookies are a way to keep track of the status of a sequence of
HTTP requests; The RFC is titled “HTTP State Management Mechanism”. HTTP
was designed as a stateless protocol, but developers needed a way to identify indi-
vidual users and keep track of the state of a session. Cookies may contain arbitrary
data, but their size is generally limited. Therefore, most web applications only store
a unique identifier (usually called the Session ID) in the cookie and store the actual
data associated with a session on the server.

Cookies can be set for host names (or with wildcard cookies for all hosts located
below in a domain) and can optionally have an expiration date. Many web appli-
cations set an expiration date in the far future to save users from logging in every
time they want to use the web application or website. Whenever the browser sends
a request to a server for which it has stored a cookie, it sends the cookie contents
along in the “Cookie:” HTTP header. It does not matter how the request was
initiated; even if a web page from another host initiates a request (e.g. by including
a specific URL as image in its page), the cookie is sent along.

4 Attack Vectors

Cross Site Request Forgeries can be performed in several different ways, depending
on how strong the attacked web application or website is protected against such
attacks.

4.1 Images

The simplest Cross Site Request Forgery attack requires a poorly implemented web
applications that perform actions for GET requests as target. The attacker prepares
a web page which contains an image with the image’s source attribute set to the
vulnerable URL, e.g.:

<img src="http://example.com/transfer_funds?destination=123456&
amount=1000">

As soon as the victim loads the web page containing this code, a request to the
specified URL will be performed and the action is executed on the server.

An easy and very effective way to protect users against this simple attack is to
only allow data change operations for POST requests. If it is for some reason not
possible to convert these operations to POST requests, a token can be included in
the URL to verify that the request was in fact initiated from a valid source. The
section “Prevention Mechanisms” outlines the requirements for tokens in greater
detail.

4.2 Autosubmitting Forms

The only way to perform POST requests to another host is to use the HTML jform;,
tag with the action attribute set to the target URL. The required form fields should
be set the desired values. Once the form is prepared, the attacker can either rely on
the user to click the submit button or he can submit the form programatically by
calling the DOM node’s “submit” function. A form submission replaces the currently
displayed website with the form action’s URL. However, if the attack should remain
undetected for as long as possible, it is also possible to create an IFrame and redirect
the form submission into that IFrame. The IFrame can be hidden with CSS so that
the user does not notice that a form submission has taken place in the background.

Listing 1.1. Autosubmitting form

<iframe name="frm" style="display:none"></iframe>

<form action="http://example.com/transfer_funds" method="POST"
target="£frm">
<input type="text" name="destination" value="123456">
<input type="text" name="amount" value="1000">

</form>

<script type="text/javascript">
document.forms [0] .submit () ;
</script>

When the form is submitted, the POST request to the specified URL is per-
formed and the browser sends the cookie for that host name along with the request.
The attack succeeds when the victim visits the page the attacker prepared and is
logged into the abused system. A way to protect form submissions originating from
non-authorized forms is to include a unique token in generated forms and only per-
form data change operations when the submitted token matches the token that was
created when generating the page.

4.3 XMLHttpRequest

From an attacker’s point of view, the XMLHttpRequest object available in many
browser (and commonly used to perform AJAX communication) is very interest-
ing because it allows setting arbitrary HT'TP headers and has the added benefit of
being able to read the result as opposed to just sending the request. XMLHttpRe-
quest can be used in environments where an attacker has access to one subdo-
main, user.example.com and the management of the service happens on the parent
domain, example.com. By setting “document.domain” to “example.com” in the
JavaScript code running in the user.example.com context, requests to example.com
can be performed ([6]).

Cross Site Request Forgery attacks require the victim to go to a certain URL,
but they are still exploitable in a large scale. As an example, a combination of XSS
(Cross Site Scripting) and CSRF was used in 2005 to create a MySpace worm named
“Samy” Within a day, a user managed to get over 1 million friends on MySpace
by inserting a code snippet on his profile page that made the viewer add him as a
friend in the background. Not only did it do that, but it also added the same code
to the profile page of the viewer so the malicious code spread around the large parts
of the website within only a couple of hours until MySpace took down the site to
repair the damage done and fix the security hole. Technically, this attack type is
not “Cross Site” because it didn’t cross host name boundaries, but the principle is
very similar ([7]).

4.4 Flash and Java

Browser Plugins like Flash and Java often times allow developers to perform re-
quests as well. However, they generally also implement the Same Origin Security
model. Flash also supports a way to perform Cross Domain Requests, specified by
Adobe ([8]). The Flash Player requests the “crossdomain.xml” file at the root of
a hostname when a Flash movie tries to access content on this domain. Based on
the policies in this file, Flash Player allows or restricts the access. If the file is not
present, access is prohibited in general. While it’s a good idea to allow develop-
ers to choose which host names have access to their host name, it can also open
potential security holes. Even YouTube had a wildcard crossdomain.xml on their
servers until late 2006 until they have been notified that it’s technically possible that
malicious Flash movies perform arbitrary actions on their servers with the user’s
login data. Typical CSRF protections (like tokens) did not prevent this since it was
possible to retrieve tokens because Flash allowed the Movie to access the content
retrieved.

To make a forged request, it is necessary that the user retains his authentication
data acquired via cookies from the browser. The Flash player does just this: It
retrieves the cookies from the browser and sends them with every request. Java(tm)
also applies the Same Origin restrictions to requests ([11]), but it is possible to
acquire the authorization from the user to contact arbitrary hosts (and in fact use
arbitrary networking technologies, not just HTTP).

5 Variants

Cross Site Request Forgeries allow for a large variety of attacks. The most commonly
implemented attack is probably a straight session riding attack that exploits the fact
that the user is already logged into a web site. This includes all kinds of malicious
activities if the web application is not properly protected. Since CSRF is not as well
known as other attacks against web applications, there is a considerable amount of

web applications out there which do not have any protection whatsoever. Most
major websites are protected, but even those occasionally have CSRF holes. In
November 2008, a domain fraud victim claimed that a CSRF hole in Google’s GMail
web application allowed an attacker to create a filter that actually didn’t filter
anything but forwarded the filtered results (hence all mails) to the attacker. That
hacker could then send a “Password forgotton” request and obtain the login data
to transfer a domain the victim owned to himself.

A more subtle attack tries to modify the configuration settings of the user’s
router. Often times, the configuration menu is freely accessible from within the
local network or only protected with a weak password. An attacker could use the
fact that the requests are performed from the user’s browser, which is located inside
the network, to change for example the DNS server in the router configuration menu
to one the attacker controls. Subsequently, he could manipulate the DNS entries so
that various web pages point to his own copy. Using this approach, it is also possible
to perform IP and port scanning inside a network to reveal more about the internal
structure to the external attacker.

A third, slightly different attack is referred to as “logout/login attack”. In this
scenario, the user is logged out of a web application and logged in with the attackers
credentials. The user does not notice this since the logout/login happens in the
background. If the user then enters personal data into the allegedly trusted website,
the attacker is able to retrieve this information later on.

A fourth scenario involves a local HTTP server installed on the victim’s com-
puter. This server could be from a regular application program such as Google
Desktop Search or pTorrent (which provides a web interface for managing tor-
rents). These web servers usually have write permissions on the victim’s computer.
In fact, such an hole existed in pTorrent ([9]). The attacker abuses pTorrent’s web
server to download a faked torrent file and store it in the user’s Autostart folder so
that the faked torrent (which is actually an executable file) is started when the user
reboots the system. This attack circumvents the firewall since the attack is local to
the system and does not cross machine boundaries.

6 Prevention Mechanisms

There are various ways to prevent Cross Site Request Forgery attacks. The most
naive is to only allow data to be changed on POST requests. However, since arbitrary
POST requests can be performed using the Autosubmission technique explained in
the “Attack Vectors” section, this is not an effective protection, but can only prevent
the simplest attacks.

6.1 Checking Referrer headers

Most browser send a “Referer:” HTTP header with each request which contains
the URL the request originates from (e.g. the page the link the user clicked on is
from). This could be used to verify that the request does indeed originate from a
web page on the same host name. In general, this suffices to provide an adequate
protection, but there are several caveats:

— Not all browsers send Referrer headers and this can be turned off by the user

— Referrer headers could be forged; there have been security holes in the past in
the Flash player which made this possible

— Referrer headers are not send for HTTPS requests due to privacy implications

This means that while a Referrer header check is better than no protection,
it does not work in all situations and should therefore be avoided when a better
solution is readily available.

6.2 Session ID in URL

Cross Site Request Forgeries are usually based on the browser sending the cookie
belonging to the site along with the request. When there is no cookie, the user is not
authenticated and therefore cannot perform malicious actions. However, dynamic
web applications require a way to identify and track individual users. This ID is
stored in the cookie, but it could also be stored in the URLs instead. This means
that each URL contains the Session ID. An attacker is unable to guess the Session
ID and can therefore not perform forged requests. Unfortunately, there are several
caveats as well:

— A user could publish the URL containing his session ID and an attacker could
use this session ID to gain access to the user’s account
— The URL becomes confusing to end users

While this is an effective protection against forged requests, the risk for acci-
dentally revealed Session IDs makes this technique impracticable.

6.3 Tokens/Nonces

Another way to prevent arbitrary requests to a URL is to require a nonce to be
present. This nonce or token is generated along with the form on the permitted
website. All requests that lack the token or provide an invalid token are rejected.
This ensures that requests are only accepted from authorized origin web pages since
the attacker is unable to guess the token.

Randomly created tokens have to be stored on the server to verify that this
token indeed exists. There should be a time limit for each token so that leaked
tokens cannot be used after a certain amount of time. The disadvantage of this
mechanism is the large amount of stale and unused tokens stored on the server.

A better approach is to create tokens algorithmically. A token generated in this
way should fulfill these requirements:

— Keyed to a specific action. This ensures that a token can only be used for that
particular action. If an attacker learns about a token, he can only use it for this
action and is unable to cause further damage. This also means that a particular
action should only be executable once.

— Keyed to a specific user (or his session ID). This makes sure that a token for
the same action is different for each user. The attacker is therefore unable to
reuse the token acquired from his own account.

— Keyed to a specific web application. A randomly created private key for the
web site should be incorporated when creating tokens. This ensures that the
attacker cannot regenerate tokens for a specific action ID and user ID. This is
not necessary when the unique session ID is used instead of a guessable user ID.

— Ideally, tokens should also be dependent on the time so that tokens become
invalid even though neither the session ID nor the private key or the action ID
change.

This is the most secure way to protect a web application from Cross Site Request
Forgery attacks, but it it also the most complex one.

6.4 Cookie as part of POST body

An easier way to ensure that requests originate from the same host is to read out
the cookie (which is restricted by the Same Origin policies) and insert it as field
in the form before submission. The web application then has to check whether the

submitted session ID in the POST body matches the session ID sent in the HTTP
header. The attacker is unable to read the cookie since the web page is generally
loaded from a different host name.

This technique has the disadvantage of requiring JavaScript to function, but
it can be used when generating tokens is impractical and JavaScript is available
anyway, for example in Rich Client applications which employ XMLHttpRequest to
perform actions of the server.

6.5 Origin HTTP header

The Origin HTTP header is a mechanism proposed by Barth, Jackson and Mitchell
in their paper “Robust Defenses for Cross-Site Request Forgery” ([10]). Browsers
should be modified to send an “Origin” HTTP header when performing a POST
request. The origin of a request is the host name of the page which performs the
request was loaded from. In contrast to the referrer header, the origin header should
not contain the path name part of the URL, thus mitigating privacy concerns. The
disadvantage of this technique is that currently no browser implements the Origin
header and until most clients support it, it cannot be used as a mean to prevent
Cross Site Request Forgeries.

7 Conclusion

Cross Site Request Forgery holes revealed in the past have shown that this attack is
not theoretical in any way but can be exploited in real life without too much effort.
A large amount of web applications are susceptible to this kind of attack because it
is not known widely, unlike Cross Site Scripting or SQL injection. Browser vendors
could also play a major role in limiting the extent of Cross Site Request Forgeries
by not sending cookies for cross domain requests unless the user requests it.

References

1. Hardy, N.: The confused deputy: (or why capabilities might have been invented).
SIGOPS Oper. Syst. Rev. 22(4) (1988) 36-38

2. Zalewski, M.: Browser security handbook; same-origin policy [http://code.google.
com/p/browsersec/wiki/Part2#Same-origin_policy accessed on Dec 15, 2008].

3. Mozilla Foundation: Same origin policy for JavaScript. [https://developer.mozilla.
org/En/Same_origin_policy_for_JavaScript; accessed on Dec 01, 2008].

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext Transfer Protocol — HTTP/1.1. Technical Report 2616 (June 1999)
Updated by RFC 2817.

5. Kristol, D., Montulli, L.. HTTP State Management Mechanism. Technical Report
2109 (February 1997) Obsoleted by RFC 2965.

6. Mozilla Foundation: document.domain. [https://developer.mozilla.org/en/DOM/
document .domain; accessed on Dec 01, 2008].

7. samy: Technical explanation of the myspace worm [http://namb.la/popular/tech.
html accessed on Dec 01, 2008].

8. Adobe, Inc.: Cross-domain policy file specification. [http://www.adobe.com/devnet/
articles/crossdomain_policy_file_spec.html; accessed on Dec 01, 2008].

9. Rios, B.: {CSRF pwns your box [http://xs-sniper.com/blog/2008/04/21/
csrf-pwns-your-box/ accessed on Dec 01, 2008].

10. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
(2008) [http://crypto.stanford.edu/websec/csrf/csrf.pdf; accessed on Dec 01,
2008].

11. Sun, Inc.: Security considerations for Java Applets. [http://java.sun.com/j2se/1.
3/docs/guide/plugin/security.html; accessed on Dec 09, 2008].

